1. > 智能数码 >

积分与路径无关(积分与路径无关后怎么做)

柯西积分定理?

在复变函数的积分里的例子可以发现,有的函数的积分只依赖于积分路径的起点与终点,而与积分路径的形状无关,而有的函数,其积分不仅与积分路径的起点与终点有关,而且与积分路径的形状也有关.深入观察后,可知,前一类函数是解析函数.由此,可提出猜想:解析函数的积分只依赖于积分路径的起点与终点,而与积分路径的形状无关.柯西在 1825 年给出此定理对猜想作了回答.也就是我们现在要介绍的柯西积分定理(' ),也叫柯西—古萨定理(– ).

平面曲线积分与路线的无关性定理?

<偏导=Q对x偏导

为什么车胎内部不是空间一维单连通?

空间二维连通域形象说就是没有“洞”的区域,即设Ω是空间一区域,Ѕ是Ω内的任一闭曲面。以Ѕ为边界的区域ΩЅ Ω,最简单如球x2+y2+z2<1,是连通的。但x2+y2+z2≤1, x2+y2+z2≠0,则就不连通了! 一维连通是指,若Г是Ω内的任一闭曲线(曲线是一维的)。若存在以Г为边界的曲面∑,使∑ Ω,则Ω就是一维连通的。如一个圆(x-2)2+y2≤1,绕y轴旋转一周,所得的像一个车胎一样的空间域(也像救生圈)。那么这个圆的圆心旋转的一闭曲线(圆),以它为边界的任何曲面不可能包含在这个域内,显然这个域是面(二维)连通的,但不是线(一维)连通的。一维连通域主要用在空间线积分与路径无关的条件上。

积分的几何意义是什么?

(1)若f(x)≥0,x∈[a,b],∫(a→b)f(x)dx的几何意义是曲线y=f(x),x=a,x=b,y=0围成的曲边梯形的面积;

(2)若f(x)≤0,x∈[a,b],∫(a→b)f(x)dx的几何意义是曲线y=f(x),x=a,x=b,y=0围成的曲边梯形的面积的相反数;

(3)若f(x)在区间[a,b]上有正有负时,∫(a→b)f(x)dx的几何意义为曲线y=f(x)在x轴上方部分之下的曲边梯形的面积取正号,曲线y=f(x)在x轴下方部分之上的曲边梯形的面积取负号,构成的代数和。

积分与路径无关(积分与路径无关后怎么做)积分与路径无关(积分与路径无关后怎么做)


积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。

比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

积分与路径无关(积分与路径无关后怎么做)积分与路径无关(积分与路径无关后怎么做)


什么叫势复?

应该是复势,(complex potential)与复变函数论在流体力学中的应用有关的一个概念。

设有一不可压缩流体做平面定常运动,其速度向量v=(u,v),其中无源、无汇,也无涡流。这些说明它等价于v=u+iv,为解析函数,称为流体的复速度,其与积分路径无关,称为流体的复势。

积分与路径无关(积分与路径无关后怎么做)积分与路径无关(积分与路径无关后怎么做)


连通区域有什么性质?

连通区域

一维连通是指,若Г是Ω内的任一闭曲线(曲线是一维的)。若存在以Г为边界的曲面∑,使∑⊂Ω,则Ω就是一维连通的。如一个圆(x-2)2+y2≤1,绕y轴旋转一周,所得的像一个车胎一样的空间域(也像救生圈)。那么这个圆的圆心旋转的一闭曲线(圆),以它为边界的任何曲面不可能包含在这个域内,显然这个域是面(二维)连通的,但不是线(一维)连通的。一维连通域主要用在空间线积分与路径无关的条件上

函数状态是什么意思?

状态函数,即指表征体系特性的宏观性质,多数指具有能量 量纲的热力学函数(如内能、 焓、吉布斯自由能、亥姆霍茨自由能)。状态函数只对 平衡状态的体系有确定值,其变化值只取决于系统的始态和终态。另外,状态函数之间相互关联、相互制约。状态函数按其性质可分为两类,即广度性质和 强度性质,其区别在于是否与 物质的量有关。

概念

在一定的条件下,系统的性质不再随时间而变化,其状态就是确定的,系统状态的一系列表征系统的物理量被称为状态函数( )。有时候也被称作热力学势,但“热力学势”更多的时候是特指内能、焓、吉布斯自由能、亥姆霍茨自由能等四个具有能量量纲的热力学函数。

状态函数表征和确定体系状态的宏观性质。状态函数只对平衡状态的体系有确定值,对于非平衡状态的体系则无确定值。在求各种热力学函数时,通常需要作路径积分(p),若积分结果与路径无关,该函数称为状态函数,否则即称为非状态函数。

若定义体系的一个性质A,在状态1,A有值A1;在状态2,有值A2,不管实现从1到2的途径如何,A在两状态之间的差值d恒成立,则A即称为状态函数。例如:温度、压力、体积、密度、能量、形态等,还有热力学函数:U(内能)、H(焓)、G(吉布斯函数)、F(自由能)、S(熵)等可以定义为体系的一个与路径无关的性质,而功和热则不可以,因为功和热无法与体系的特定状态联系在一起。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, website.service08@gmail.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息