1. > 电脑手机 >

切割磁感线产生电流的原理(切割磁感线产生电流的原理视频)

切割磁力线的线圈是否有电?

单独的一个圆环切割磁感线也会产生感应电动势,只是左右两半环产生了等大反向的电动势,相当于抵消了,不会产生感应电流。此题中可以把环等效成两根直金属棒,同时切割磁感线,就又可以等效成两个相同的电源并联,电压不变,还是

电流为何能产生磁场?

怎么形成导体电流

做切割磁力线运动的导体产生电流的原因,它是三个因素结合而成的结果。其一是导体上的原子核外带负电的电子;其二导体受到的外动力并且力的方向垂直于磁力线方向;其三是磁力线。导体产生电流主要原因是组成磁力线的微体核能,该核能上有双扇子形薄片和中间凸起的圆形薄片,这两个薄片垂直相交,交线段为双扇子形中间部位的中心线段和中间凸起的圆形薄片的直径。这个重合线段既是中凸圆交电力线的直径也是扇子形电力线的正中间线段,它们是相等的。这两个相垂直薄片都是按一定规律排列成的电力线,其中圆形薄片是一个中间凸起的曲面圆交电力线,它是由圆心发出的正负相邻均匀排列的电力线并组成的中间凸起的曲面圆,这些电力线都交于圆心,叫中凸圆交电力线,无论正或负电力线的方向都朝圆心吸,圆片上间夹着的正电力线对稍微加力的导体上带负电电子产生异性相吸,使电子吸到圆片电力线的圆心区域,此时的电子既受圆片上正电力线朝圆心的吸力,又受到加在导体运动的外力带动导体的电子稍微动些,这两个力使电子移动到圆片电力线的圆心区域,当电子到达水平的圆片电力线的圆心区域时,就立刻被此处的扇子形平行电力线向上的正电电力,将电子推到该电力线顶端并且进行排列成扇子形的电子波。

各因素的方向

导体做垂直切割磁力线运动力的方向垂直于磁力线,若这个使导体运动的动力线方向,能与组成磁力线核能上的双扇子形平面垂直时,为最佳动力线方向。由于组成磁力线上核能的中凸圆交电力线平面垂直于双扇子形电力线,所以使导体运动的动力线方向,几乎平行或重合于中凸圆交电力线平面,同样也是选择的最佳动力线方向,这样可知使导体运动的动力线方向与磁力线垂直;动力线方向与核能上的双扇子形电力线平面垂直;动力线与核能上的中凸圆交电力线平面平行或重合;动力线与双扇子形电力线平面上排列的扇形电子波仍然垂直。动力线在这里相当于一组平行线,其宽度等于磁力线范围尺度,长度等于导体的运动距离,厚度等于导体直径。由于平行动力线能使导体上的电子稍微动些,这说明动力线是不显电性的电力线即隐形电力线,其电量特小。若导体放在磁力线里保持静止状态,导体是不会产生电流的,若运动就会产生电流这说明,组成磁力线核能的圆片上的正电力线吸引稍微加力电子移动到它圆心,再由双扇子形平行电力线向上推送电子排列成扇子形电子波,该波平面垂直于动力线并且重合或平行于磁力线。在穿过导体的整齐磁力线上排列着扇子形电子波,波与波下底直线相连,并且朝动力线(导体运动方向)右侧直线运动。从这里可以看到两个相互垂直的隐形(不显电性)电力线即动力线与磁力线产生一个与它们两都垂直的显性电力线(在导体上),这个电力线方向在动力线右侧,该电力线(在导体上存在)上排列着双扇子形电子波串并且沿着电力线方向运动,这就是说两个隐形电力线产生了一个显性电力线,构成三线垂直。实质是磁力线垂直方向上,加定方向的动力线,定向动力线上加直线形导线,并且沿着动力线的垂直方向运动,直线形导线上产生垂直于动力线的电力线,这些电力线产生原因是,穿过导体的组成磁力线的核能上的圆片电力线向圆心吸导体上的电子,双扇子形电力线将这些吸到圆心区域的电子,在它的上面排列成双扇子形电子波,本身磁力线整齐排列的,那么它形成的波同样也是整齐排列的,这些电子波平面原本是正平行电力线上排列着的电子,这些成平面的负电电子自然就会倾斜一方向,内层的平行正电力线同样也倾斜相对的另一方向(这是电的方向性规律引起的),在这里正电朝导体运动方向的右侧,那么负电自然是导体运动方向的左侧,这就成为扇子形电极,这些电极串在处在磁力线范围内的导体上形成一个大电极,即导体右端为正极,左端为负极。正电极与处在磁力线以外导体上的原子核外电子之间自然出现异性相吸,由于原子核对电子的吸引力远远超过了正电极对电子的吸引力,所以正电极受到电子吸力进行移动,负电极受到原子核上的电子推斥力作用,同样背离电子移动,这样电极两端的吸推两个同向力,使扇子形电子波体在导体上运动。

三种相垂直电力线

动力线垂直磁力线也垂直电力线(导体上)。动力线是立体平行隐形电线;磁力线是立体平行隐形电力线;电力线是立体平行电子波串。动力线上的隐形电量比磁力线隐形电量大些,电力线上的电量就是立体平行的电子波串它是显性的大电量与磁力线的电量的的不可比拟。这些说明了在做切割磁力线运动的导体,用的两个垂直的隐形电力线,产生垂直于动力线并且为显性电的电子波(相当于磁力线范围的导体电流)。导体上的电子波平面垂直于组成磁力线核能上的中凸圆交电力线平面,与导体运动方向上的平行动力线垂直;与双扇子形平行电力线平面重合或平行。在磁力线范围的运动导体产生电子波形的电流方向,永远在导体运动方向的右侧。

动力线与磁力线产生电子波

切割磁感线产生电流的原理(切割磁感线产生电流的原理视频)切割磁感线产生电流的原理(切割磁感线产生电流的原理视频)


动力线垂直于双扇子形电力线平面,这样中凸圆交电力线向四面八方吸电子到其圆心区域,但是顺动力线方向吸的电子比四面八方吸的电子的力稍微大些,这样有利于电子到达扇子形平面底处,并且向上推送电子进行排列成双扇子形电子波。再加上能使扇子形在导体上占有整齐不脱导体边位置。具体的是吸来的电子直接进入扇子形与圆形交线中心处,由于扇子形平面对电子的吸力,使吸到中心处的电子,在交线上以中间向两旁稍微散开些,并且顺着垂直方向上的扇子形平行电力线向上推送电子,使电子到达扇子形顶端排列成扇子形模样,又由于扇子形本身就像波,所以叫扇形电子波。

电流最大值对应的动力方向

导体在磁力线垂直方向上做切割磁力线运动,导体与磁力线的关系是,导体受到的外动力线方向既垂直于磁力线;并且还要与组成磁力线核能上的中凸圆交电力线平面平行,或经过该平面;还要与组成磁力线核能上的双扇子形平面垂直,符合这条件下的运动状态的导体,所受的动力方向才是最佳选择。它们的原因是扇子形电力线平面垂直于中凸圆形电力线平面并且从中间垂直相交于线段,该线段既是扇子形中间线段又是中凸圆形直径。由于中凸圆交电力线是正负相邻均匀排列的,所以在它的平面电力线范围内,向四面八方的位置上,存在着无数个相交电力线朝圆心的吸力,对稍微加力的正电粒子或稍微加力的负电粒子,都能使它顺着对应的异性电力线运动到其圆心区域,在这里中凸圆交电力线上的正电力线,对导体上的加同向力的电子产生吸引,使电子顺着中凸圆交正电力线快速移动到其圆心区域,这是单纯的中凸圆交电力线能使稍微加力的电子运动规律。

电子波形成原理

对于切割磁力线运动的导体上最简单的力,就是平行定长度的动力线,推动导体在垂直磁力线方向上运动,导体上的原子核外围电子自然随着该力出现受力趋势,相当于稍微加力的电子。导体进入磁力内,实质上是磁力线穿入导体上,那么组成磁力核能上的圆片正电力线向四面八方吸收稍微加力的电子,使它们飞般的到达圆心区域,通过圆心直径上的双扇子形平行电力线,将身边的电子迅速推到双扇子形顶端,进行从上向下排列成扇子模样,这就是电子波,由于每根磁力上由无数个单体核能组成的,每个单体核能都含有着一个双扇子形平行电力线,若处在导体体积上所有磁力线上的双扇子形平行电力线上,都排列上电子波,对于每个正电力线的扇子形平面上全部是电子排列的,该电子面的电力相当大,由于带电体或带电面有一规律,即带电体或带电面上的电会自然分开,形成电量相等的两极,这是因为面内层是正电力线的正电,外层是电子上的负电,所以电子排列的双扇子形电子波从双扇子形中间分开为两极,电子稍微倾向后面显出负电,正电力线稍微线倾向前面显出负电,同一平面上的扇子形电子波行列同行列,首尾异性相吸成串。这就是做切割磁力线运动导体上的电子波串形成原理。

电子波的方向

电子波的底是直线相连的。起初在每根磁力线上,按照它上面的扇子形状排列的电子波,由于扇子形平面垂直于导体的运动力线,所以扇子形平面上排列的电子波同样也垂直于导体的运动力方向,电子波在导体相连的长度恰巧是导体处在磁力线上范围的宽度,并且也是推动导体的平行动力线的宽度,这就是磁力线范围处的导体上排列成的相连的电子波。

导体电子波的运动方向

当处在磁力线区域的导体上全部排列成有规律的整体电子波串行列时,由于各个单波相当于一个微小电极,正电极总是在切割磁力线运动力方向的右侧,这样它们连成的整体串同样也分正负电两极,正电极同样也在切割磁力线运动力方向的右侧时,对于处在磁力线范围的那部分导体成为整体的大电极,这个大电极的正电极仍然在切割磁力线运动力方向的右侧,这部分导体两端成正负电极,电力相当大,在离开磁力线范围的导体上,对靠近正电极的原子核外电子产生很大的吸力,由于原子核外电子不能挣脱原子核对它的吸力,它们之间的吸力,使正电极向电子方向运动;对靠近负电极的原子核外电子产生很大的排斥力,对负电极起到推动作用,这就是同性相斥异性相吸规律,产生了后面的负电极受到推力,前面的正电极受到靠前的电子吸力,并且吸力与吸推力作用在同一整体大电极的首尾,这样使电子波组合体在磁力线范围导体上运动。这就是磁力线范围的导体电流。

切割磁感线产生电流的原理(切割磁感线产生电流的原理视频)切割磁感线产生电流的原理(切割磁感线产生电流的原理视频)


曲面圆交电力线怎样吸电子

由于这个曲面圆片上无数个电力线和其对应的四面八方无数个朝圆心吸力方向,这些电力线全部与磁力线方向垂直,所以对导体加力的电子就沿着垂直于磁力线方向的圆片的圆心移动,此时电子受到两种作用,即导体受的外力,引起导体的电子稍微加力,圆片上的无数方向正电力线就要四面八方向圆心吸这些加力电子到其圆心区域,此时的电子立即被其垂直方向上的平行扇子形正电力线,将电子推送到扇子形顶端并且按照扇子形状进行排列,排列成一连串贴在磁力线上的双扇子形电子波并且下面为直线形。

为啥叫扇子形电力线

双扇子形电力线薄片的两个扇子各自中间部分稍长些,才叫它扇子形的平行电力线,它们这两个扇子并列在一起组成双扇子形电力线,从与它相交的圆面直径为界,向上部分扇子形平行线为正电力线,并且方向朝上,向下部分电力线为负电力线,并且方向朝下,底下是连着的两个弧形线段,由于双扇子形电力线的下方为负电力线,它与带负电的电子是排斥作用,不能排列电子,只有上方的正扇子形电力线排列电子。由于这个微小双扇子形平行电力线的上下为异性电,所以这些微体接触时就会首尾异性相吸成串,这就是磁力线,这也是它能连成磁力线的第一个作用。它的第二个作用,就是双扇子形向上的正电力线,对穿着磁力线的导体上的带负电电子进行排列成电子波。具体的是将电子吸到双扇子顶端,进行从上往下排列到正负分界线位为止,排列成的电子波上为双扇子形状下为直线形。这就是平面电子波。

曲面螺旋形电流

电子波在导体上运动,只要离开磁力线的导体,电子波就不受磁力线的束博力,就会翻劲成曲面螺旋形状仍然运动,并且绕着导体中心线运动,这个圆形螺旋体积几乎与导体体积全等或小于导体的体积。

导体电子三次运动

起初导体做垂直切割磁力线运动的方向,导体的电子顺正电力线方向移动到圆片电力线的圆心区域这是电子第一次运动,再由扇子形正电力线向上推力,使导体的电子出现第二次向上移动,移动方向与导体运动方向相垂直,当电子移动到扇子形顶端时按规律排列成波,波出现两极,磁力线以外的导体上的电子,对波的正极相吸对负极相斥,这样电子波正极受电子吸引运动,这就是磁力线范围的电流方向,它永远在导体运动方向的右边,这是导体上排列的波形电子运动,这属于导体电子的第三次移动。

电形状的性质

正负异性电除了具有本能性即异性相吸与同性相斥外还有,电的形状性质,若点电,是微小圆柱平行电力线和它外套的无数方向的球交电力线组成的微体,电线交于球心,并且正负相邻均匀掺杂排列,它是不定的方向;正电电力线或负电力线电力线(指单性),具有一定的长度和方向,它是某种点电连成的串,若它与异性不相等的电相吸,仍然保持着线形状,它就会形成上下两极,两极电的正负性是靠产生原因确定的,比如做垂直切割磁力线运动的直线导体上,排列的扇子形电子波面的正负极,它是在双扇子形的平面平行正电力线的每根电力线,吸上带负电的电子自然排列成电子串,排列成的各个电子串组合仍然是平面,但是双扇子形平行正电力线的电量与它上面排列的所有电子的电量是不相等的,此时正平行电力线面就要向动力线的右侧倾向,负电的双扇子电子面就要向动力线左侧倾向,这是规律,再比如旋转力使正负电粒子旋转运动,以旋转面为界限,正电粒子向上发出正电力线,负电粒子发出负电力线,并且正负电力线方向相反,这就是旋转力使粒子产生立体平行电力线,分上下两极它的细节是,旋转力方向确定正负电极的位置,若旋转动力是顺时针,以时针面为界面,正电力线在时针背面,负电力线在时针正面,这是正负电粒子随运动力产生电极的规律,做切割磁力线运动导体上排列成的电子波平面同样实施,在这里导体运动瞬间排好电子波,导体仍然运动着相当于时针在短时间的直线运动,那么这些排好的电子波就会在时针背面形成负电极,时针正面形成正电极。产生电极的原因对磁力线无关系,磁力线在磁力产电过程中,只起到排列双扇子形电子波的作用。带电粒子、面、体在随某动力的方向上运动时,它就会在运动力方向的垂直的方向上产生直线形两极,并且动力线右侧为正电极,左侧为负电极。产生的正负电极,起决定性作用的是动力方向。这个电子波就是以运动力为界分成左右两极的;对于面电,它必然是正负电不等的内外两层形成的,它在静止的瞬间,正负电层各向对方的反方向出现倾向趋势,自然形成正负电两个极,根据面积等分开,一半面积为正电极另一半面积为负电极;对于电体,必然是带电面有规律排列成的,同样按等体积分开两半,一半为正电极另一半为负电极。在导体上形成的电子波正负两极,是两极外区域电子吸正极,推负极,这两个同向力使电子波体电极,向正极方向运动形成电子波流,这就是处在磁力

线范围内的导体电流。总的来说点带电体是交于一点无数个方向的正负相邻电力线组成的点电体,它是不定方向的;线分正负向为线电极;面分正负向为面电极;体分正负向为体电极。

顺力运动的带电体产生电极

导体做切割磁力线运动的动力,起两个作用,第一使导体上的电子稍微动些,第二使导体上排列成的双扇形电子波,产生正负直线两极,并垂直于动力线方向,正电极在动力线右侧,负电极在动力线左侧。随飓风旋转的带正负电粒子,在旋转平面正负粒子上下分离,与旋转面为界面,若是反时针的旋转力,正粒子为时针表背面,负电粒子为时针表正。

切割磁感线运动的导体,导体两端电压为何为路端电压?

1、因为只有那段线路才有切割磁力线,才有产生感应电动势呀。

2、根据楞次定律,外电路磁场变化稳定后(不变时)自感为0,过程是逐步减小的,故电路反电动势逐步减小,总电流肯定逐渐增大呀。

3、对于电源而言,如原电池就是如此。到了寿命后期,如果去充电,电压很快上升,但作为负载电源时,由于其内阻增大输出的端电压自然在下降。U=ε-Ir。r增大后,U必然减少。

切割磁感线产生电流的原理(切割磁感线产生电流的原理视频)切割磁感线产生电流的原理(切割磁感线产生电流的原理视频)


电动机在工作过程中也在切割磁感线,是否也产生了电流?

电动机工作时切割磁感线,在电路中产生一个与电源电动势相反的动生电动势,不产生电流,起削弱电路中原有电流的作用。

从能量角度看,此电动势(称反电动势)乘以电流恰为电动机输出的机械功,体现了电能向机械能转化的过程。根据楞次定律,发电机工作时通电线圈在磁场中受到一个与其运动方向相反的力(安培力),是阻力,为维持发电机工作,需在线圈上持续施加外力以克服安培力做功。发电机工作时主要的能量转换过程是机械能转化为电能,发电机发电功率(发电机产生的电动势与电流的乘积)恰等于克服安培力做功的功率。电动机工作时产生反电动势和发电机发电时线圈受到安培阻力,都是能量守恒定律的要求与体现。

转动磁铁线圈产生电?

电学内容中有关电流与磁场的关系中的确解释了两者之间的关系:单根导体必须作切割磁力线运动时在导体中会产生电流,由于运动是相对的,所以导体不动,磁场变化,磁力线切割导体运动时也会在导体上产生电流;而对线圈来说,磁力线要切割导线运动,则线圈内磁力线的数量(磁场强度)必须发生改变,或者从线圈外部进入线圈中间(内部磁场增强);或者从线圈内部移动到线圈外(磁场减弱);在这过程中,闭合线圈由于内部磁场改变而产生电流。这是发电机发电的基本原理。

导体完全在磁场中做切割磁感线运动,为什么没有电流?

其实本来是回路中的磁通量有变化,就会产生感应电流。

回路中的“一部分导体”实际上就是“回路的一部分”的意思,回路的一部分在磁场中做切割磁感线运动,那么回路包含的磁场面积就发生了改变,当然磁通量也发生改变,产生感应电流。

如果回路的“整个导体”做切割磁力线的运动,那就是整个回路在磁场中运动。如果是在匀强磁场中,不改变形状的运动。那么回路包含的磁通量不变,没有感应电流。如果是在非匀强磁场中运动,尽管是整个回路一起运动,但是回路中的磁通量还是改变的,所以此时还是会有感应电流。

还有如果回路在磁场中整体运动时,形状改变了(如从正方形改变成了圆形),那么就算是在匀强磁场中运动,因为回路的面积改变了,所以回路中的磁通量还是会改变,这时候还是会有感应电流。

如果回路的“整个导体做切割磁感线运动”,也就是整个回路做切割磁感线运动是否产生电流,需要具体分析,不能一概而论。

导体棒匀速切割磁感线能产生感应电流吗?如是加速或减速呢?感应电流的大小与方向与什么有关系?如何判断?

产生感应电流的条件:B⊥S,(若B不垂直S,则要转换)只要穿过闭合电路的磁通量发生变化,感应电力就会产生变化。磁通量=加速或减速,直接可以用“增反减同”来判断,即磁场增加时,感应电流磁场与原磁场方向反向;磁场减小时,感应电流磁场与与原磁场方向同向.(楞次定律必须得掌握,很重要哦)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, website.service08@gmail.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息