1. > 智能数码 >

线面垂直的判定定理(面面垂直推线面垂直的判定定理)

线面垂直的性质定理

线面垂直的性质定理:

性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。

性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

性质定理4:垂直于同一平面的两条直线平行。

推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。

当一条直线垂直于一个平面时,则这条直线垂直于平面上的任何一条直线,简称线面垂直则线线垂直。由三垂线定理平面上的一条线和过平面上的一条斜线的影垂直,则这条直线与斜线垂直。

线面垂直的判定定理(面面垂直推线面垂直的判定定理)线面垂直的判定定理(面面垂直推线面垂直的判定定理)


线面垂直的判定定理及其证明

判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。

向量法:设直线l是与α内相交直线a,b都垂直的直线,求证:l⊥α

证明:设a,b,l的方向向量为a,b,l

∵a与b相交,即a,b不共线

∴由平面向量基本定理可知,α内任意一个向量c都可以写成c= λa+ μb的形式

∵l⊥a,l⊥b

∴l·a=0,l·b=0

l·c=l·(λa+ μb)=λl·a+ μl·b=0+0=0

∴l⊥c

设c是α内任一直线c的方向向量,则有l⊥c

根据c的任意性,l与α内任一直线都垂直

∴l⊥α

扩展资料

性质定理:

性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。

性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

性质定理4:垂直于同一平面的两条直线平行。

推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)

参考资料来源:百度百科——线面垂直

证明线面垂直有几种方法?

5种。

1、线面垂直的判定定理:直线与平面内的两相交直线垂直。

2、面面垂直的性质:若两平面垂直则在一面内垂直于交线的直线必垂直于另一平面。

3、线面垂直的性质:两平行线中有一条与平面垂直,则另一条也与平面垂直。

4、面面平行的性质:一线垂直于二平行平面之一,则必垂直于另一平面。

5、定义法:直线与平面内任一直线垂直。

如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。

扩展资料:

空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)

过空间内一点(无论是否在已知平面上),有且只有一条直线与平面垂直。下面就讨论如何作出这条唯一的直线。

任选两个面中的一个,在其中做一条直线垂直于两面相交的直线。因为是同一个面内,所以一定能做出来。然后,因为线线垂直,相交线也在另一个面内,做的线在另一面外,所以线面垂直。

直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

已知m∥n,m⊥α,求证n⊥α。证明:设m∩α=M,n∩α=N。再在m、n上分别另取P、Q。

∵m∥n

∴设m与n确定平面β,且α∩β=MN

过N在α内作AB⊥MN,连接PN。

∵PM⊥α,AB⊂α

∴PM⊥AB

∵PM⊂β,MN⊂β

∴AB⊥β

∵QN⊂β

∴QN⊥AB~~~①

又∵PM⊥α,MN⊂α

∴PM⊥MN

∵PM∥QN

∴QN⊥MN~~~②

∵MN∩AB=N,MN⊂α,AB⊂α

∴QN⊥α

参考资料来源:百度百科——线面垂直

线面垂直的判定定理 线面垂直是有什么性质

1、线面垂直判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。注意关键词“相交”,如果是平行直线,则无法判定线面垂直。

2、线面垂直性质定理:

(1)如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

(2)经过空间内一点,有且只有一条直线垂直已知平面。

(3)如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

(4)垂直于同一平面的两条直线平行。

(5)推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)

线面垂直的判定定理及其证明

判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。

向量法:设直线l是与α内相交直线a,b都垂直的直线,求证:l⊥α

证明:设a,b,l的方向向量为a,b,l

∵a与b相交,即a,b不共线

∴由平面向量基本定理可知,α内任意一个向量c都可以写成c= λa+ μb的形式

∵l⊥a,l⊥b

∴l·a=0,l·b=0

l·c=l·(λa+ μb)=λl·a+ μl·b=0+0=0

∴l⊥c

设c是α内任一直线c的方向向量,则有l⊥c

根据c的任意性,l与α内任一直线都垂直

∴l⊥α

扩展资料

性质定理:

性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。

性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

性质定理4:垂直于同一平面的两条直线平行。

推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)

参考资料来源:百度百科——线面垂直

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, website.service08@gmail.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息