1. > 智能数码 >

共轭复根α与β怎么求(共轭复根i和β怎么求)

共轭复数的指数形式?

设复数z=re^(it),那么z=rcost+irsint,它的共轭复数为:

z'=rcost-irsint=rcos(-t)+irsin(-t)=re^(-it)

共轭复根是一对特殊根。指多项式或代数方程的一类成对出现的根。若非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。

共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。

多项式:

定义

在数学中,多项式()是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。

几何特性

多项式是简单的连续函数,它是平滑的,它的微分也必定是多项式。

泰勒多项式的精髓便在于以多项式逼近一个平滑函数,此外闭区间上的连续函数都可以写成多项式的均匀极限。

设复数z=re^(it),那么z=rcost+irsint,它的共轭复数为z'=rcost-irsint=rcos(-t)+irsin(-t)=re^(-it)

一元二次方程的共轭复数怎么求?

△<0时,一元二次方程有一对共轭复根。解法和△>0时的解法一样,也有因式分解法(包括十字相乘法因式分解)、配方法、公式法等方法。唯一区别是引入了i²=-1

当根的判别式小于零时,此方程无实根,但有二个虚数根,他们是共轭复数。

共轭复根是一对特殊根。指多项式或代数方程的一类成对出现的根。若非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。

一元三次方程共轭复根求根公式?

高等数学并没有说三次方程没有求根公式。事实上,3次和4次方程都有求根公式,5次及以上的高次方程才没有一般的解析公式。

3次方程求根公式是著名的卡尔丹公式

方程x^3+px+q=0的三个根为

x1=[-q/2+(q^2/4+p^3/27)^(1/2)]^(1/3)+

+[-q/2-(q^2/4+p^3/27)^(1/2)]^(1/3)

x2=w[-q/2+(q^2/4+p^3/27)^(1/2)]^(1/3)+

+w^2[-q/2-(q^2/4+p^3/27)^(1/2)]^(1/3)

x2=w^2[-q/2+(q^2/4+p^3/27)^(1/2)]^(1/3)+

+w[-q/2-(q^2/4+p^3/27)^(1/2)]^(1/3)

其中w=(-1+√3i)/2.

推导过程:

1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2

2、方程x^3=A的解为x1=A(1/3),x2=A^(1/3)*ω,x3=

A^(1/3)*ω^2

3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+ax^2+bx+c=0的形式。再令x=y-a/3,代入可消去次高项,变成x^3+px+q=0的形式。

设x=u+v是方程x^3+px+q=0的解,代入整理得:

(u+v)(3uv+p)+u^3+v^3+q=0

共轭复根α与β怎么求(共轭复根i和β怎么求)共轭复根α与β怎么求(共轭复根i和β怎么求)


如果u和v满足uv=-p/3,u^3+v^3=-q则①成立,由一元二次方程韦达定理u^3和V^3是方程

y^2+qy-p^3/27=0的两个根。

解之得,y=-q/2±(q^2/4+p^3/27)^(1/2)

不妨设A=-q/2-(q^2/4+p^3/27)^(1/2),B=-q/2+(q^2/4+p^3/27)^(1/2)

则u^3=A,v^3=B

u=

A(1/3)或者A^(1/3)*ω或者A^(1/3)*ω^2

v=

B(1/3)或者B^(1/3)*ω或者B^(1/3)*ω^2

但是考虑到uv=-p/3,所以u、v只有三组解:

u1=

A(1/3),v1=

B(1/3)

u2=A^(1/3)*ω,v2=B^(1/3)*ω^2

u3=A^(1/3)*ω^2,v3=B^(1/3)*ω

那么方程x^3+px+q=0的三个根也出来了,即

x1=u1+v1=

A(1/3)+B(1/3)

共轭复根α与β怎么求(共轭复根i和β怎么求)共轭复根α与β怎么求(共轭复根i和β怎么求)


x2=

A^(1/3)*ω+B^(1/3)*ω^2

x3=

A^(1/3)*ω^2+B^(1/3)*ω

这正是著名的卡尔丹公式。你直接套用就可以求解了。

△=q^2/4+p^3/27为三次方程的判别式。

当△>=0时,有一个实根和两个共轭复根;

当△<0时,有三个实根。

根与系数关系是:设ax^3+bx^2+cx+d=0(a≠0)的三根为x1,x2,x3,

则x1+x2+x3=-b/a,x1x2+x2x3+x1x3=c/a,x1x2x3=-d/a.

二阶非齐次线性微分方程的通解结构?

二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:1.如果f(x)=P(x),Pn(x)为n阶多项式;2.如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。

二阶常系数齐次线性微分方程

标准形式

y″+py′+qy=0

特征方程

r^2+pr+q=0

通解

1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)

2.两根相等的实根:y=(C1+C2x)e^(r1x)

3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)

特解y*设法

1、如果f(x)=P(x),Pn(x)为n阶多项式。

若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。

比如如果Pn(x)=a(a为常数),则设Qm(x)=A(A为另一个未知常数);如果Pn(x)=x,则设Qm(x)=ax+b;如果Pn(x)=x^2,则设Qm(x)=ax^2+bx+c。

若0是特征方程的单根,在令特解y*=x^k*Qm(x)*e^λx中,k=1,λ=0,即y*=x*Qm(x)。

若0是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,λ=0,即y*=x^2*Qm(x)。

2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。

若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。

若α是特征方程的单根,在令特解y*=x^k*Qm(x)*e^αx中,k=1,即y*=x*Qm(x)*e^αx。

若α是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,即y*=x^2*Qm(x)*e^αx。

3、如果f(x)=[Pl(x)cos(βx)+Pn(x)sin(βx)]e^αx,Pl(x)为l阶多项式,Pn(x)为n阶多项式。

若α±iβ不是特征值,在令特解y*=x^k*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx中,k=0,m=max{l,n},Rm1(x)与Rm2(x)设法要根据Pl(x)或Pn(x)的情况而定(同Qm(x)设法要根据Pn(x)的情况而定的原理一样)。

即y*=[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx

若α±iβ不是特征值,在令特解y*=x^k*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx中,k=1,即y*=x*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx。

二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),特解

1、当p^2-4q大于等于0时,r和k都是实数,y*=y1是方程的特解。

2、当p^2-4q小于0时,r=a+ib,k=a-ib(b≠0)是一对共轭复根,y*=1/2(y1+y2)是方程的实函数解。

共轭复根α与β怎么求(共轭复根i和β怎么求)共轭复根α与β怎么求(共轭复根i和β怎么求)


扩展资料:

一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。研究非齐次线性微分方程其实就是研究其解的问题,通解是由其对应的齐次方程的通解加上其一个特解组成。

一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为y'+p(x)y=Q(x)。

齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。

二阶常系数非齐次线性微分方程通解公式:y'+py'+qy=f(x)。其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。

若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

常微分方程在高等数学中已有悠久的历史,由于它扎根于各种各样的实际问题中,所以继续保持着前进的动力。二阶常系数常微分方程在常微分方程理论中占有重要地位,在工程技术及力学和物理学中都有十分广泛的应用。比较常用的求解方法是待定系数法、多项式法、常数变易法和微分算子法等

四阶微分方程怎么求特征方程?

例如二阶常系数齐次线性方程的形式为:y''+py'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别式的符号,其通解有三种形式:

1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];

2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];

3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。

至于n阶以及非齐次线性方程的情况,高数上都有。

如何求下列微分方程的通解_?

一阶微分方程如果式子可以导成y'+P(x)y=Q(x)的形式,利用公式y=[∫Q(x)e^(∫P(x)dx)+C]e^(-∫P(x)dx)求解若式子可变形为y'=f(y/x)的形式,设y/x=u 利用公式du/(f(u)-u)=dx/x求解若式子可整理为dy/f(y)=dx/g(x)的形式,用分离系数法,两边积分求解二阶微分方程y''+py'+q=0 可以将其化为r^2+pr+q=0 算出两根为r1,r2。 1 若实根r1不等于r2 y=c1*e^(r1x)+c2*e^(r2x). 2 若实根r1=r2 y=(c1+c2x)*e^(r1x) 3 若有一对共轭复根 r1=α+βi r2=α-βi y=e^(αx)[C1cosβ+C2sinβ]

共轭复根推导?

共轭复根是一对特殊根。指多项式或代数方程的一类成对出现的根。若非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。[1]

共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。

复数共轭是指a+bi与a-bi,这里a,b都是实数. 产生这对共轭复根的二次方程为k[(x-a)^2+b^2]=0 一般的实系数二次方程,ax^2+bx+c=0,当判别式△=b^2-4ac

非常系数微分方程公式大全?

1.二阶常系数齐次线性微分方程解法

一般形式:y”+py’+qy=0,特征方程r2+pr+q=0

特征方程r2+pr+q=0的两根为r1,r2 微分方程y”+py’+qy=0的通解

两个不相等的实根r1,r2 y=C1er1x+C2er2x

两个相等的实根r1=r2 y=(C1+C2x)er1x

一对共轭复根r1=α+iβ,r2=α-iβ y=eαx(C1cosβx+C2sinβx)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, website.service08@gmail.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息